Self-Stabilization

MARCO SCHNEIDER
Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712-1188

In 1973 Dijkstra introduced to computer science the notion of self-stabilization in the
context of distributed systems. He defined a system as self-stabilizing when “regardless
of its initial state, it is guaranteed to arrive at a legitimate state in a finite number of
steps.” A system which is not self-stabilizing may stay in an illegitimate state forever.
Dijkstra’s notion of self-stabilization, which originally had a very narrow scope of
application, is proving to encompass a formal and unified approach to fault tolerance
under a model of transient failures for distributed systems. In this paper we define
self-stabilization, examine its significance in the context of fault tolerance, define the
important research themes that have arisen from it, and discuss the relevant results.
In addition to the issues arising from Dijkstra’s original presentation as well as several
related issues, we discuss methodologies for designing self-stabilizing systems, the role

of compilers with respect to self-stabilization, and some of the factors that prevent

self-stabilization.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]:
Network Protocols—protocol verification; C.2.4 [Computer-Communication
Networks]: Distributed Systems—distributed applications; network operating systems;
D.1.1 [Programming Techniques]: General; D.1.3 [Programming Techniques]:
Concurrent Programming; D.2.4 [Software Engineering]: Program
Verification—correctness proofs; reliability; D.2.5 [Software Engineering]: Testing
and Debugging—error handling and recovery; D.2.10 [Software Engineering]:
Design—methodologies; D.4.1 [Operating Systems]: Process Management—
concurrency; deadlocks; mutual exclusion; synchronization; D.4.5 [Operating
Systems]: Reliability—fault-tolerance; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs

General Terms: Algorithms, Design, Reliability, Verification

Additional Key Words and Phrases: Convergence, fault tolerance, stabilization, self-
stabilizing systems, self-stabilization, transient errors, transient failures

INTRODUCTION

The notion of self-stabilization was intro-
duced to computer science by Dijkstra
[1973, 1974]. Uncertain as to whether a
nontrivial self-stabilizing system under
distributed control could exist at all,
Dijkstra limited his attention to a ring of
finite-state machines. He defined a sys-
tem as self-stabilizing when “regardless

of its initial state, it is guaranteed to
arrive at a legitimate state in a finite
number of steps.” A system which is not
self-stabilizing may stay in an illegiti-
mate state forever. Dijkstra observed that
“The complication is that a node’s be-
haviour can only be influenced by the
part of the total system state description
that is available in that node: local ac-
tions taken on account of local informa-

Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

© 1993 ACM 0360-0300 /93 /1200-0045 $01.50

ACM Computing Surveys, Vol. 25, No. 1, March 1993

46 . Marco Schneider

CONTENTS

INTRODUCTION
1. DEFINITION OF SELF-STABILIZATION
2 SELF-STABILIZATION AS AN APPROACH TO
FAULT TOLERANCE
3. AN OVERVIEW OF SELF-STABILIZATION
31 The Original Introduction
3 2 The Role of the Central Demon
3.3 The Role of Asymmetry and Probabilistic
Self-Stabilization
3.4 Reducing States in a Token Ring
3.5 Costs of Self-Stabilization
3.6 Self-Stabilizing Communication Protocols
4. METHODOLOGIES FOR DESIGNING SELF-
STABILIZING SYSTEMS
5. THE ROLE OF COMPILERS WITH RESPECT
TO SELF-STABILIZATION
5.1 Compnrlers for Sequential Programs
5.2 Compilers for Asynchronous Message-Passing
Systems
5.3 Compilers for Asynchronous Shared-Memory
Systems
6 SOME FACTORS THAT PREVENT SELF-
STABILIZATION
7. SUMMARY
ACKNOWLEDGMENTS
REFERENCES

tion must accomplish a global objective.”
While much of the difficulty of achieving
self-stabilization, as well as its benefits,
arise out of concurrency, as we shall dis-
cuss, it has applications in sequential
systems too.

Dijkstra did not address the signifi-
cance of the property of self-stabilization.
Appreciation of the results were left to
the reader. In the years following his
introduction, very few papers were pub-
lished in this area, as one can see by
glancing at our bibliography. This fact
was belabored by Lamport, who said the
following at his invited address in 1983
to the 3rd ACM Symposium on Principles
of Distributed Computing [Lamport
19844:

I regard this as Dijkstra’s most brilliant
work—at least, his most brilliant pub-
lished paper. It’'s almost completely un-
known. I regard it to be a milestone in
work on fault tolerance.

ACM Computing Surveys, Vol. 25, No. 1, March 1993

More recently, the investigation and
use of self-stabilization as an approach to
fault-tolerant behavior has been under-
going a renaissance. Within the past few
years there has been a flurry of papers,
as well as a workshop devoted entirely to
this area at the Microelectronics and
Computer Technology Corporation in
August, 1989. Dijkstra’s notion of self-
stabilization, which originally had a very
narrow scope of application, is proving to
encompass a formal and unified ap-
proach to fault tolerance under a model
of transient failures for distributed
systems. In this paper we survey the
emerging field of self-stabilization.

Our presentation is organized as fol-
lows. First, we define self-stabilization.
Then, we discuss its relationship to fault
tolerance and argue that it represents a
departure from previous approaches to
this area. Next, we discuss Dijkstra’s
seminal work and use it to motivate our
survey of the field. We discuss the issues
arising from Dijkstra’s original presenta-
tion as well as several related issues.
Finally, we discuss three important
themes that have emerged in this area of
research. In particular, we discuss the
methods that have been used to design
more complex self-stabilizing systems; we
discuss the relationship between compil-
ers and self-stabilization; and we enu-
merate some of the factors that have been
found to interfere with self-stabilization.
We conclude with some suggestions for
future research.

1. DEFINITION OF SELF-STABILIZATION

Before defining self-stabilization, some
preliminary definitions are in order. A
program specifies a system through the
combination of its statements and an im-
plicit model of computation or type of
architecture (e.g., asynchronous message
passing, CSP, Turing Machine, etc.) for
which the statements are written. In sys-
tems that consist of more than one ma-
chine, we refer to each such machine as a
process. A system is composed of two
types of components: processes and inter-
connections between processes (such as

shared memory or message channels).
The topology of a system is the directed
graph formed from its components by de-
noting processes as nodes and their in-
terconnections (via shared memory or
message channels) as directed edges.
Each component of a system has a local
state. We define the global state of a
system (likewise a program) as the union
of the local states of its components. The
behavior of a system consists of a set of
states, a transition relation between
them, and a set of fairness criteria on the
transition relation.

We define self-stabilization for a sys-
tem S with respect to a predicate P, over
its set of global states, where P is in-
tended to identify its correct execution. S
is self-stabilizing with respect to predi-
cate P if it satisfies the following two
properties:

(1) Closure—P is closed under the exe-
cution of S. That is, once P is estab-
lished in S, it cannot be falsified.

(2) Convergence—Starting from an ar-
bitrary global state, S is guaranteed
to reach a global state satisfying P
within a finite number of state tran-
sitions.

States satisfying (not satisfying) P are
called legitimate (illegitimate) states re-
spectively. We use the terms safe and
unsofe interchangeably with legitimate
and illegitimate, respectively. A program
may be defined to be self-stabilizing in
a corresponding manner. Thus, a self-
stabilizing program specifies a self-
stabilizing system.

We introduce a generalization of self-
stabilization based on Arora and Gouda
[1992] and Arora [1992] which will prove
to be quite useful. We define stabiliza-
tion for a system S with respect to predi-
cates P and @, over its set of global
states. S satisfies @ ~» P (read as Q sta-
bilizes to P) if it satisfies the following
two properties.

(1) Closure—P is closed under the exe-
cution of S. That is, once P is estab-
lished in S, it cannot be falsified.

Self-Stabilization . 47

(2) Convergence—Starting from any
global state satisfying @, S is guar-
anteed to reach a global state satisfy-
ing P within a finite number of state
transitions.

Note that if S is self-stabilizing with
respect to P then this may be restated as
TRUE ~ P in S.

It is often the case that in writing a
program, the author does not have a par-
ticular definition of safe and unsafe states
in mind but has designed the program to
function from a particular set of start
states. Under these circumstances, it is
reasonable to define as safe those states
that are reachable under normal pro-
gram execution from the set of legitimate
start states (hereafter referred to as the
reachable set). By default, when we say
that a program is self-stabilizing, with-
out mentioning a predicate, we mean with
respect to the reachable set. By defini-
tion, the reachable set is closed under
program execution, and it corresponds to
a predicate over the set of states. Such a
definition seems all the more natural
when we are dealing with algorithms
whose purpose is to compute a function
as opposed to ensuring some form of co-
ordination and control, in which case the
start state incorporates the input to the
function.

We introduce the .model of failure that
we will use in our discussion on fault
tolerance. A transient failure is an event
that may change the state of a system,
but not its behavior. We assume that the
state of a system is violable, whereas its
behavior is not. Transient failures may
change the global state in a system by
corrupting the local state of a process as
represented by memory or program
counter (how states are realized is not
part of the model) or by corrupting mes-
sage channels or shared memory. The
property of self-stabilization models the
ability of a system to recover from tran-
sient failures under the assumption that
they do not continue to occur.

In the design of systems with dynamic
topologies, the safety of a state may also
depend on the current topology. The

ACM Computing Surveys, Vol. 25, No. 1, March 1993

48 . Marco Schneider

property of self-stabilization may be used
to model the ability of a dynamic system
to tolerate changes to its topology brought
about by failures or repairs of its compo-
nents. This is done by defining the global
state of a dynamic system to include its
current topology. That is, “up” or “down”
with respect to each component may be
defined as part of the system state. More
generally, a program for dynamic sys-
tems might require a specific type of
topology to work correctly. For instance a
distributed message-passing program
might require a strongly connected graph.
In such a case, we could define the set of
“safe” topologies by a separate predicate
®. The property & ~ P in S would de-
note the property that for any topology
satisfying @, S is self-stabilizing with re-
spect to P.

A useful device for understanding the
difficulty of achieving self-stabilization in
a dynamic system is an adversarial argu-
ment which we will abstract in the form
of a malicious adversary or evil demon
engaged in a suicide mission. The goal of
the malicious adversary is to sabotage a
system in any way possible. Such an at-
tack can arbitrarily and even maliciously
alter the system state. In addition it is
possible that the adversary may wipe out
some of the system’s components (which
may be modeled as part of its state also).
What makes such an attack all the more
malicious is that it may not be possible
for a system to “know” 1t has been at-
tacked. To be self-stabilizing, a system
must have the ability to recover from
such malicious attacks assuming that
they cannot repeatedly occur and that a
functional subset of the systems compo-
nents are left intact. This last part 1s
crucial since a real attack could destroy a
system by obliterating some or all of its
components and hence altering its topol-
ogy in addition to its state. Should the
topology be altered, recovery cannot al-
ways be guaranteed by any system. In
particular, two possibilities arise.

(1) The system is destroyed so that it can
no longer meet the functional re-
quirements of its mission. Processes
and/or interconnections have been

ACM Computing Surveys, Vol. 25, No. 1, March 1993

destroyed. No form of fault tolerance
can overcome this situation once it
has occurred. The malicious adver-
sary has won.

(2) While some components of the sys-
tem may be destroyed, enough are
left intact so that it can complete its
mission. It is up to the designer of a
system to decide under what set of
topologies (conditions) the system
should be able to complete its task.
The system must be able to stabilize
under such conditions.

We now further elaborate upon the re-
lationship between self-stabilization and
fault tolerance.

2. SELF-STABILIZATION AS AN APPROACH
TO FAULT TOLERANCE

A self-stabilizing system has two useful
properties which can informally be seen
as restatements of one another:

(1) It need not be initialized.
(2) It can recover from transient failures.

If we are willing to tolerate the tempo-
rary violation of a system specification,
then we need not specify an initial state
for a self-stabilizing system: any state
will do. The requirement that execution
commence from an initial state is prob-
lematic at best for multiprocess systems.
Consider, for example, computer net-
works. It would be unreasonable to stop
a network and reinitialize it when adding
or removing nodes. In this section we
focus on the second property above, that
of fault tolerance.

We first argue that self-stabilization
represents a departure from previous ap-
proaches to fault tolerance. Historically,
researchers have tended to address the
wide variety of phenomena within fault
tolerance by countering the effects of
their individual causes. In doing so they
have neglected their commonality and
ended up with a piecemeal approach.
Self-stabilization provides a unified ap-
proach to transient failures by formally
incorporating them into the design model.
Again we quote Lamport on Dijkstra’s

seminal work [Lamport 1984]:

I regard it to be a milestone in work on
fault tolerance. The terms “fault toler-
ance” and “reliability” never appear in
this paper.

“Fault tolerance” and “reliability” are
an integral but implicit part of the design
and not afterthoughts. Given that we can
never eliminate transient failures, a
self-stabilizing system meets a stronger,
more satisfying notion of correctness.
That is, should a transient failure occur,
resulting in an inconsistent system state,
then regardless of the failure’s origin, the
system will eventually correct itself with-
out any form of outside intervention.

By way of example, we examine coordi-
nation loss within distributed systems.
Coordination loss may be viewed as a
transient failure. This example is adapted
from Gouda and Multari [1991]. “Infor-
mally, coordination is said to be lost at a
given global state of a distributed pro-
gram if and only if the local states of the
different processes in the program,
though each of them may be correct in its
own right, are inconsistent with one an-
other in the given global state.” Any pro-
gram that is self-stabilizing can recover
from loss of coordination. This phe-
nomenon has numerous causes, many of
which are indistinguishable once such an
event has occurred. These include:

(1) Inconsistent initialization: The dif-
ferent processes in the program may
be initialized to local states that are
inconsistent with one another.

(2) Mode change: A system may be de-
signed to execute in different modes.
In changing the mode of operation it
1s impossible for all of the processes
to effect the change at the same time.
The program is bound to reach a
global state in which some processes
have changed while others have not.

Transmission errors: The loss, cor-
ruption, or reordering of messages
may result in an inconsistency be-
tween the states of sender and
receiver.

(3)

4)

Process failure and recovery. If a
process returns to service after “going

Self-Stabilization . 49

down,” its local state may be incon-
sistent with the rest of the program.

(5) Memory crash: The local memory of
a process may crash, causing its local
state to be inconsistent with the rest
of the program.

Traditionally, each of these issues has
been handled separately, one at a time,
and yet these seemingly disparate failure
phenomena all have a common anti-
dote, that of the self-stabilizing system.
The traditional incremental and ad hoc
approach is analogous to the use of ex-
ception handlers for the purpose of
fault-tolerant software. Each addition of
an exception condition may indeed re-
duce the possibility of a failure, but with-
out a formal basis its elimination can
never be guaranteed.

We have argued that self-stabilization
provides a formal and unified approach
to fault tolerance with respect to a model
of transient failures and that this repre-
sents a departure from previous ap-
proaches to fault tolerance. We now
briefly address how one might apply our
transient failure model in a useful
manner. Implicit in the notion of a self-
stabilizing system, and hence our tran-
sient failure model, is the assumption
that while the abstract state of a pro-
gram or system may be corrupted, the
program or system itself is inviolable (its
behavior remains intact). The appropri-
ateness of such an assumption depends
on the fault or source of failure we wish
to address, as well as the construction of
the system in question.

Consider an actual computer system
upon which we wish to implement a self-
stabilizing program. If program and state
are both realized in memory, then clearly
the property of self-stabilization does not
address the issue of memory corruption
due to outside environmental events.
However, if the program is placed in
read-only memory, then the property of
self-stabilization more properly ad-
dresses such faults. Memory corruption
will only affect the abstract state of the
program. In addition to memory corrup-
tion, we listed four other causes for loss
of synchronization in distributed sys-

ACM Computing Surveys, Vol. 25, No. 1, March 1993

50 . Marco Schneider

tems. Events such as transmission er-
rors, process failures, mode change, and
inconsistent initialization can alter the
abstract state of a system without other-
wise affecting its proper behavior.

We note an important distinction be-
tween the use of self-stabilization and
traditional methods such as replication
or error correction: whereas the latter
methods attempt to mask the occurrence
of errors and thus prevent failure, self-
stabilization guarantees recovery should
a transient failure occur. In this way,
self-stabilization provides a complemen-
tary approach to other methods of fault
tolerance.

One criticism of self-stabilization as a
design goal is that it is too strong a
property and thus either too difficult to
achieve or achieved at the expense of
other goals. As transient failures are not
always arbitrary, it is useful to consider
recovery from restricted transient fail-
ures. Such a notion is modeled by the
property of stabilization. Instead of con-
sidering recovery from an arbitrary state,
we can consider recovery from a re-
stricted set of states as specified by a
predicate @ (corresponding to the set of
states that may result from a particular
set of failures). The property of @ ~ P
may be used in place of self-stabilization
with respect to P under the assumption
that a transient failure will result in a
state satisfying @.

We conclude with some remarks on how
the formal property of self-stabilization
may be used to specify additional fault-
tolerant behavior. Self-stabilization has
historically been viewed in terms of the
ability of a system to recover from tran-
sient failures under the assumption that
they do mnot continue to occur. How-
ever, the two formal properties of self-
stabilization and stabilization may be
used to specify the ability of a system to
tolerate all types of faults. This is
achieved by considering faults to be tran-
gitions on an augmented state space and
transition relation. The original transi-
tions of the system cannot alter the aug-
mented state but may depend on it. The
properties of self-stabilization and stabi-

ACM Computing Surveys, Vol. 25, No. 1, March 1993

lization as applied to the augmented sys-
tem can be used to specify fault tolerance
within the original system. An important
application of this technique in the liter-
ature on self-stabilization is the case of
dynamic topologies. Self-stabilization
may be used to specify a system’s ability
to tolerate permanent as well as tempo-
rary changes to its topology. Further dis-
cussion is beyond the scope of this sur-
vey. For a formal approach to fault toler-
ance and an elaboration on these ideas,
we direct the reader to Arora and Gouda
[1992] and Arora [1992] as well as Cris-
tian [1985].

3. AN OVERVIEW OF SELF-STABILIZATION
3.1 The Original Introduction

Dijkstra’s original introduction of self-
stabilization to computer science
[Dijkstra 1973, 1974] continues to be im-
portant both because of the historical
perspective it provides and because, as
we shall see, many of the issues it raised
continue to be the focus of papers on the
subject today. We follow the presentation
given in Dijkstra [1974].

The context of his presentation was a
connected graph of finite-state processes,
where processes placed in directly con-
nected nodes were called neighbors. He
defined a privilege as a boolean function
of the state of a process and its neighbors
indicating whether a particular transi-
tion was enabled for the process. Self-
stabilization was defined in two phases.
He first defined as legitimate those
states meeting a global-correctness
criterion with the following four addi-
tional constraints:

(1) In each legitimate state one or more
privileges will be present.

(2) In each legitimate state each possible
move will bring the system again in a
legitimate state.

(3) Each privilege must be present in at
least one legitimate state.

(4) For any pair of legitimate states there
exists a sequence of moves transfer-
ring the system from the one into the
other.

He then used the following definition for
self-stabilization:

We call the system “self-stabilizing” if
and only if, regardless of the initial state
and regardless of the privilege selected
each time for the next move, at least one
privilege will always be present and the
system is guaranteed to find itself in a
legitimate state after a finite number of
moves.

The definition above was provided in
the context of mutual exclusion, and thus
it is restrictive in comparison to our own.
The four constraints on legitimate states
combine the requirement of closure
(number two) with several other unnec-
essary properties. Constraint one is a
progress requirement that is in principle
unnecessary. It 1s equivalent to requiring
that all legitimate computations be infi-
nite, or in other words, the system should
not terminate. This is a reasonable con-
straint in the context of the original pre-
sentation. As we shall see, termination 1s
one of the factors that can prevent self-
stabilization. Constraint two is a restate-
ment of our closure definition. Constraint
three does not appear to be relevant to
the notion of legitimate and is a restric-
tion on the program. Constraint four
produces a restrictive definition in com-
parison to ours since it precludes the
possibility that the legitimate states are
divided into two or more disjoint sets
each of which is closed under the transi-
tion relation. Finally, the explicit re-
quirement that one privilege always be
present is unnecessary.

Uncertain as to whether a nontrivial
(all states legitimate is considered triv-
ial) self-stabilizing system under dis-
tributed control could exist at all,
Dijkstra narrowed his attention to a ring
of processes under the control of a cen-
tral demon which selected in “fair ran-
dom order” one privileged process at a
time allowing it to make a transition that
was a function of its old state and that of
its neighbors. He defined as legitimate
those states in which exactly one privi-
lege was present. In Dijkstra [1973], he
additionally required that the privilege
rotate around the ring. Thus, he was

Self-Stabilization . 51

attempting to produce a self-stabilizing
algorithm for mutual exclusion via a to-
ken ring with one token.

Dijkstra [1973] observed that if the
processes are required to be identical,
then in general the problem could not be
solved. More specifically, in the case of a
nonprime number of processes N, should
the system start in a state with a cyclic
symmetry of degree n, where (2 <n <
N /2), then the demon is free to give its
first n commands equally spaced around
the ring, thus preserving a state of cyclic
symmetry. This behavior may be contin-
ued such that the system will never con-
verge to a legitimate state.

Two extremes arise in the solution to
this problem. One may choose to make
all of the processes different or to make
one “distinguished” and the others iden-
tical. Dijkstra chose the latter approach.
Dijkstra [1974] presents two additional
solutions for which privilege is not re-
quired to rotate around the ring (instead
it travels back and forth). These solu-
tions use four and three states respec-
tively to achieve the desired result. Both
of these solutions are bidirectional. We
call a ring wnidirectional if the tran-
sition relation for each machine only
depends on one neighbor; otherwise
it is bidirectional. We present his first
solution based on the presentation in
Dijkstra [1973]. This solution is
unidirectional.

We are given N K-state processes
(K > N) which are labeled M, through
M, _,, where M, is distinguished, and
for 1 <i <N, M, are identical.

If the state of M,, 1 <1 <N, is differ-
ent from that of its left-hand neighbor, a
transition is enabled which will result in
M, taking on the state of its left-hand
neighbor:

Vil <i < N:
M:=M, ,ifM,#M,_.)

If the state of M, is equal to that of its
left-hand neighbor M,,_, (call it state S),
a transition is enabled that will bring it
into state (S + 1) mod K:

M,= (M, + 1)ymodK if M,=My_,

ACM Computing Surveys, Vol. 25, No. 1, March 1993

52 . Marco Schneider

Since these are the only possible tran-
sitions, after a process makes a transi-
tion, it is no longer privileged. It is easy
to see that if the system starts with all
processes in the same state, then the
privilege will rotate around the ring.
Furthermore it can be shown quite easily
that if started in an arbitrary state, the
system will stabilize.

A number of important issues are
raised by Dijkstra’s search for an exam-
ple of a self-stabilizing system, both in
the choices by which he restricted that
search and in his final solution. These
issues include the necessity of a central
demon, the number of states in a solu-
tion, the importance of asymmetry,
and the use of criteria for legitimate
states other than mutual exclusion. Sub-
sequent papers have introduced a num-
ber of new issues including the costs of
self-stabilization, probabilistic self-sta-
bilization, and self-stabilizing communi-
cation protocols (programs). In the re-
mainder of this section we give an
overview of subsequent work in this area
organized according to these issues.

3.2 The Role of the Central Demon

The requirement of a central demon is
an unreasonable constraint for a truly
distributed system. In particular, its
implementation requires some form of
centralized control. Dijkstra used such a
mechanism because the transitions of
neighboring processes were interfering.
That is, by firing its enabled transition,
one process could disable an enabled
transition in another process. In general,
a system in which transitions are exe-
cuted atomically and only sequentially
(as provided by a central demon) will not
behave the same as one in which transi-
tions are fired in parallel, or one in which
reads and writes are interleaved.

In response to the restrictions of the
central demon, Burns [1987] and Brown
et al. [1989] both introduce classes of
self-stabilizing token systems whose state
transitions are noninterfering. Burns
considers a ring of finite-state processes,
and Brown et al. consider an array of

ACM Computing Surveys, Vol. 25, No. 1, March 1993

finite-state processes with synchroniza-
tion primitives between neighbors. By
virtue of noninterference, if a state tran-
sition is enabled at any instant, then it
will continue to be enabled until it is
executed. Once a transition is enabled in
a process, it continues to be enabled re-
gardless of what other enabled transi-
tions are fired, including ones by that
process. The noninterference property of
these systems makes their implementa-
tion in hardware easier and allows them
to be realized with a read/write level
of atomicity. These systems are self-
stabilizing in the sense that regardless of
the number of tokens that exist initially,
the system is guaranteed to reach a state
wherein only one token exists.

Thus a central demon (or centralized
control of any form) is not necessary for a
self-stabilizing single-token system.

It is interesting to note that Dijkstra’s
three-state and four-state solutions are
still correct if transitions are allowed to
fire synchronously [Burns et al. 1989].

3.3 The Role of Asymmetry and Probabilistic
Self-Stabilization

While Dijkstra showed that a selft
stabilizing token ring with a nonprime
number of processes must have an asym-
metric design, Burns and Pachl [1989]
demonstrate that there is a self-stabiliz-
ing ring with no distinguished process (a
symmetric solution), if the size of the
ring is prime. It should be noted, how-
ever, that their solution requires the use
of a demon to prevent the possibility of a
livelock in which all of the processes move
in lockstep forever. In other words, the
ring cannot be synchronous.

Asymmetry has to be maintained in
systems where processes may synchro-
nize with one another such as mutual
exclusion, dining philosophers, drinking
philosophers, and resource allocation
systems under deterministic rules. This
point was brought to prominence by
Lehman and Rabin [1981] who show that
there is no deterministic symmetric
solution to the dining philosophers
problem. Gouda [1987] demonstrates a

self-stabilizing asymmetric solution to
this problem.

Because such systems are important
targets for self-stabilizing implementa-
tions, an understanding of the relation-
ship between self-stabilization and
symmetry (or asymmetry) is important.
There are two methods by which asym-
metry may be maintained in systems of
synchronizing processes for which we in-
troduce the terms state and identity.
(Gouda [1987] introduces the terms
memory and identity respectively to
denote these two types of asymmetry.) A
system is asymmetric by state when all
of its machines are identical, but they
have different initial local states. This
may be realized by identical programs. A
system is asymmetric by identity when
not all of its machines are identical. This
may be realized by identical programs
that are parameterized by a local id.
These two methods may be rephrased as
a distinction between the use of a homo-
geneous set of processes with different
start states and the use of a heteroge-
neous set of processes.

In general, systems asymmetric by
state (only) cannot be self-stabilizing,
while those that are asymmetric by iden-
tity can be. This follows from the fact
that if a system that is asymmetric
by state is put into a symmetric global
state, it may not converge to an asym-
metric global state. Thus Gouda’s
self-stabilizing solution to the dining
philosophers problem is by necessity
asymmetric by identity.

As pointed out, these results hold only
for deterministic solutions. In their pa-
per, Lehman and Rabin [1981] demon-
strate a probabilistic symmetric solution
to the dining philsophers problem. By
incorporating randomized actions, they
break symmetry. We define probabilistic
self-stabilization for a system S with re-
spect to a predicate P, over its set of
global states. S is probabilistically self-
stabilizing with respect to predicate P if
it satisfies the following two properties:

(1) Closure—P is closed under the exe-
cution of S. That is, once P is estab-
lished in S, it cannot be falsified.

Self-Stabilization . 53

(2) Convergence—There is a func-
tion f from the natural numbers
to the interval [0, 1] satisfying
Lim, ,, f(k) = 0 such that the prob-
ability that starting from an arbi-
trary global state, S will reach a
global state satisfying P within £
transitions is at least 1 — f(k).

Israeli and Jalfon [1989] present a proba-
bilistic self-stabilizing algorithm for ori-
entation of an asynchronous bidirectional
ring of processes, and Herman [1990]
presents a probabilistic self-stabilizing
algorithm for a synchronous ring with an
odd number of identical processes and
one token.

3.4 Reducing States in a Token Ring

In this section we discuss results
concerning the number of states per
machine required to achieve self-
stabilization in token rings. The goal of
producing systems with a finite number
of states per machine is of particular
interest because such machines may have
direct implementations in hardware.

We first discuss the quest for self-
stabilizing token rings with two states
per machine. If we do not require the
property of self-stabilization, then there
exists an asymmetric token ring with two
states per machine. Consider the follow-
ing solution where initially all machines
have the same value:

(Vill =i < N:
Ml = M(l-l) I’fMl #* M(i*1)>
My= M, if My=M,_,

Ghosh [1990b] shows that the mini-
mum number of states per machine pos-
sible in a self-stabilizing token ring,
assuming a central demon and deter-
ministic execution, is three. However,
Ghosh [1990a] demonstrates the exis-
tence of a nontrivial self-stabilizing sys-
tem which requires two states. In order
to achieve this solution a high atomicity
is used in each action. In particular, each
of the nonexceptional machines must
read from three of its neighbors. A non-

ACM Computing Surveys, Vol. 25, No. 1, March 1993

54 . Marco Schneider
ring topology and a higher atomicity is
traded for a reduced number of states.
In Herman [1990], a solution requiring
only two states is presented for a proba-
bilistically self-stabilizing synchronous
token ring with randomized actions. This
solution is unidirectional and symmetric.
Flatebo and Datta [1992] provide a two-
state probabilistically self-stabilizing to-
ken ring with randomized actions under
the assumption of a “randomized central
demon” {the choice among privileged ma-
chines is made randomly). The assump-
tion of randomness allows them to ignore
malicious scheduling on the part of the
demon. Their solution is unidirectional
and asymmetric. We now present their
solution requiring two exceptional
machines.

{Exceptional Machine 0}
My= -(M,) ifMy,=My_,
{Exceptional Machine N — 1}
My _ == = (My_,) with some probability
My =My,
{All Other Machines}
Vil<i<N-1:

M = “|Ml L.fMl:ﬁMl,1>

1

In order for self-stabilizing systems
with two states to be obtained, it is nec-
essary to either relax the requirement of
self-stabilization to probabilistic self-
stabilization and use randomized actions,
or use a nonring topology with higher
atomicity. The exact relationships
between these properties has yet to be
determined.

We conclude with some additional work
concerning the number of states required
per machine in self-stabilizing token
rings. While Dijkstra’s bidirectional solu-
tions required four and three states
respectively, his unidirectional solution
required N + 1 states per machine. Had-
dix {1991] demonstrates two unidirec-
tional token rings that only require a
constant number of states. His solutions
work under a distributed demon (any

ACM Computing Surveys, Vol. 25, No. 1, March 1993

number of machines may be selected at
each step). In Israeli and Jalfon [1990]
dynamic token rings are investigated. It
is shown that the number of states per
machine in a dynamic token ring whose
size belongs to the range [2--- N]is Q(N
— 1). As a direct consequence, any solu-
tion for dynamic token rings of arbitrary
size must have an infinite number of
states per machine.

3.5 Costs of Self-Stabilization

While it is agreed that self-stabilization
is a desirable property, its definition does
not preclude the possibility of unbounded
recovery in a system. The definition does
not include a bound on the number of
steps a system takes to converge to a safe
state. Furthermore, one would expect
there to be tradeoffs between how fast
a system stabilizes and how fast it
executes. A study of these costs is very
important if this model is to have appl-
ications in real-time systems, that is,
systems where goals must be accom-
plished within a specific amount of time,
or by a certain time.

Following the terminology of Gouda
and Evangelist [1990], we introduce two
important concepts relating to the costs
of self-stabilization: Convergence Span
and Response Span. We define the Con-
vergence Span as the maximum number
of transitions that can be executed in a
system, starting from an arbitrary state,
before it reaches a safe state. We define
the Response Span as the maximum
number of transitions that can be exe-
cuted by a system starting from some
initial state and ending in some target
state. The choice of initial and target
state sets depends on the intended func-
tionality of the system.

Gouda and Evangelist [1990] present a
class of self-stabilizing systems for de-
tecting termination on a unidirectional
ring, where, for a fixed number of pro-
cesses n, (1) the convergence spans of
n/k are inversely proportional to the
response spans of nk and (2) & is a pa-
rameter whose value can be chosen arbi-
trarily from the domain 1 through n.

They define Convergence Span as the
maximum number of critical transitions
that can be executed in a system, start-
ing from an arbitrary state, before it
reaches a safe state. Our definition as-
sumes implicitly that all state transi-
tions are critical. The motivation behind
critical transitions is that only transi-
tions that may lead to a violation of safety
requirements are important. Their
weaker definition of self-stabilization al-
lows a system to remain in an unsafe
state indefinitely if none of its critical
transitions are executed infinitely often.

Whitbty-Strevens [1979] investigates
the three algorithms proposed by
Dijkstra in terms of their Convergence
Span and their cost in network commun-
ication. He uses the term “Pseudo-
Legitimate States” for states which are
not legitimate, but will converge to a le-
gitimate state and have already met the
aim of mutual exclusion. Under our defi-
nition of self-stabilization, we can iden-
tify all such states as legitimate, since
the property of mutual exclusion is closed
in Dijkstra’s algorithms. Thus, the dis-
tinction between legitimate and pseudo-
legitimate is unnecessary when applied
to our definitions.

Chang et al. [1987] evaluate a re-
stricted case of Dijkstra’s K-state solu-
tion and find that the expected number
of moves which processes make to reach
a legitimate state is O(n'®), and the ex-
pected number of messages passed is
0(n?). Tchuente [1981] is also concerned
with convergence span. He provides an
algorithm that converges twice as fast as
Dijkstra’s.

3.6 Self-Stabilizing Communication
Protocols

Gouda and Multari {1991] and Multari
[1989] define a communication protocol
as existing over a distributed system with
FIFO message channels and consisting of
a set of actions (each corresponding to a
particular process), where the variables
of each process (excluding the message
channel) are local to that process. They
prove that the following three properties

Self-Stabilization . 55

are necessary for a communication proto-
col to be self-stabilizing:

(1) Nontermination.

(2) An infinite number of safe states (in
the form of unbounded local vari-
ables) in a nonempty subset of its
processes.

(3) Timeout actions in a nonempty sub-
set of its processes.

They show that the standard formula-
tions of the sliding-window protocol and
the two-way handshake are not self-
stabilizing and present self-stabilizing
versions. Because it is finite state, the
standard formulation of the alternating-
bit protocol is not self-stabilizing as a
direct consequence of the second require-
ment that a self-stabilizing communica-
tion protocol must have an infinite
number of safe states.

In response to this last result, Afek
and Brown [1989] present a probabilistic
version of the alternating-bit protocol
that is self-stabilizing. Finally, Burns et
al. [1990] introduce a notion weaker than
self-stabilization, that of pseudo-stabili-
zation. They are able to show that the
alternating-bit protocol does pseudo-
stabilize to its intended specification.
Informally, system S pseudo-stabilizes
to predicate P, if and only if under all
computations, starting from an arbitrary
state, eventually, P holds forever. In
other words, P may hold and not hold a
finite unbounded number of times, but
eventually it will continue to hold. By
contrast, our definition of self-stabiliza-
tion requires that once predicate P
becomes true it continues to hold for-
ever. The stronger requirement of self-
stabilization is advantageous over
pseudo-stabilization in finite-state sys-
tems, since the former property implies a
bounded convergence span while the lat-
ter does not. This follows as a conse-
quence of the pigeonhole principle (the
same unsafe state cannot oceur more than
once). Formally, pseudo-stabilization is
defined in terms of sets of computations
rather than state predicates. It is ex-
pressed in temporal logic as eventually

ACM Computing Surveys, Vol. 25, No. 1, March 1993

56 . Marco Schneider
always P. Further discussion is beyond
the scope of this survey.

4. METHODOLOGIES FOR DESIGNING
SELF-STABILIZING SYSTEMS

Although Dijkstra’s original work on
self-stabilization was presented in the
context of mutual exclusion on a ring of
finite-state machines, the issues of algo-
rithm and architecture are orthogonal to
the property of self-stabilization. Kruijer
[1979] is the first work to separate
these issues from the property of
self-stabilization. He presents a self-
stabilizing program for a tree-structured
system of finite-state machines in which
only one process along any path from the
root to a leaf node may be privileged at a
time. Thus, more than one process may
be privileged at a time. Essentially, the
way the algorithm works is that the root
is moved one state ahead resulting in a
wave that is propagated through the
branches of the system to its leaves and
then reflected back to the root. This cor-
responds to a diffusing computation. The
state transitions of Kruijer’s system are
interfering.

If we wish to design more complex
self-stabilizing systems for arbitrary
topologies, then we ought to apply tradi-
tional methodologies such as layering and
modularization. We would like to divide
a program into distinct components,
make each component self-stabilizing in-
dependently and then compose them. Re-
cent research on self-stabilization has
been addressing these issues. As it turns
out, self-stabilization is amenable to the
technique of layering. Consider the prop-
erty @ ~ P that we introduced in
Section 1 as a generalization of self-
stabilization. We noted that if S 1is
self-stabilizing with respect to P, then
TRUE ~ P in S. Furthermore, the rela-
tion ~ is transitive. If @ ~» P and P ~
R, then @ ~ R. Informally we can see
how transitivity corresponds to the tech-
nique of layering. Given S, satisfying
@ ~ P and S, satisfying P ~ R, we
combine S; and S, such that S, reads
from the variables of S; to produce a new

ACM Computing Surveys, Vol. 25, No. 1, March 1993

program satisfying @ ~» R. For a formal
treatment of these techniques as well as
related ones see Arora [1992], Arora and
Gouda [1992], as well as Gouda and Her-
man [1991].

A logical first step in addressing the
design of self-stabilizing systems through
program layering is to develop primitives
that provide structure on which other
algorithms may be built. Two basic struc-
turing mechanisms for a concurrent sys-
tem are a common clock and the topology
by which its processes are intercon-
nected. We discuss clocks first.

Maintenance of time through the use
of local clocks for shared-memory sys-
tems is called unison by Gouda and
Herman [1990] and Couvreur et al.
[1992]. Unison is achieved when the
clocks of a system are in agreement and
remain so under incrementation. Unison
may be specified as a safety property and
a progress property. More specifically for
a synchronous shared-memory system we
have:

* Safety: All clocks have the same value.

e Progress: All clocks are incremented at
each step.

For an asynchronous shared-memory
system we have:

e Safety: For any two neighboring nodes,
the values of their clocks differ by at
most one.

e Progress: A clock is incremented to ¢ +
1, when the clocks in all neighboring
nodes have the value 1 or i + 1.

A self-stabilizing algorithm for syn-
chronous unison with bounded clocks is
provided in Arora et al. [1991]. Gouda
and Herman [1990] provide a self-
stabilizing algorithm for synchronous
unison with unbounded counters. Fi-
nally, Couvreur et al. [1992] provide
self-stabilizing algorithmg for both
bounded and unbounded asynchronous
unison in a shared-memory model. An
important application of asynchronous
unison is to simulate a synchronous sys-
tem.

Perhaps the most basic primitive with
respect to an arbitrary dynamic topology

is leader election. An algorithm for self-
stabilizing leader election may be found
in Afek et al. [1990]. Given the presence
of a leader, another basic primitive that
can be provided is a spanning tree. Dolev
et al. [1990] and Arora and Gouda [1990]
layer self-stabilizing mutual exclusion
and reset algorithms respectively on top
of self-stabilizing spanning-tree algo-
rithms for arbitrary connected graphs.
An implicit part of the spanning-tree al-
gorithm of Arora and Gouda [1990] is a
leader election. We now discuss these two
examples of self-stabilizing programs
produced by layering techniques.

Dolev et al. [1990] separate the prop-
erty of self-stabilization from the task of
achieving mutual exclusion on an asyn-
chronous shared-memory system by uti-
lizing a compositional approach in their
design wherein one self-stabilizing layer
is built on another. The algorithm they
present is dynamic, allowing the topology
to change, with the exception of a distin-
guished process. They use a weaker
model of shared memory than in previ-
ous works, wherein read and write
actions are integrated into one state
transition., In their model, reads and
writes are independent steps. This allows
more general schedules such as P1 reads,
P2 reads, P2 writes, P1 writes. Transi-
tion systems that are noninterfering can
also afford such schedules since once a
transition is enabled, it continues to be
enabled.

The first layer of their algorithm is a
self-stabilizing spanning-tree protocol for
an arbitrary topology which may change
dynamically with the exception of the
distinguished process. Their protocol is
based on a breadth-first search of the
graph rooted at the distinguished pro-
cess. The distinguished process is needed
in order to break symmetry, and must
always be present. The programs of all
other processes are identical, but param-
eterized by their local topology.

The second layer of their algorithm is a
self-stabilizing protocol to achieve mu-
tual exclusion on a dynamic tree-
structured system. It works as follows.

Self-Stabilization . 57

When a process becomes privileged it ex-
ecutes its critical section. Once the privi-
leged process completes execution of its
critical section, it passes the privilege to
its children in left-to-right order. This
results in a depth-first tour of the span-
ning tree.

Finally, they combine the two protocols
by superposing their respective programs
on each process in order to obtain a sin-
gle self-stabilizing dynamic protocol for
mutual exclusion on arbitrary connected
graphs.

Arora and Gouda [1990] introduce a
self-stabilizing reset algorithm for asyn-
chronous shared-memory systems. They
also utilize a compositional approach in
their design wherein one self-stabilizing
layer is built on another. Their algorithm
is dynamic, allowing the topology to
change, as long as the corresponding
graph is connected. Unlike in Dolev et al.
[1990], the assumption of a distinguished
process (leader) for spanning-tree con-
struction is not made. However, their
system is asymmetric by identity. Each
process has a unique identifier.

The system consists of three layers, a
self-stabilizing spanning-tree layer, a
self-stabilizing wave correction layer, and
an application layer. In the spanning-tree
layer, a leader or root is elected, leading
to a rooted spanning tree. In the wave
layer, reset requests are forwarded to the
root which initiates a diffusing computa-
tion in which the reset propagates to the
leaves of the tree and is “reflected” back
to the root. Once it returns to the root,
the reset is complete.

A slightly different layering technique
is found in Katz and Perry [1990].
(We will discuss this work in greater
detail in Section 5.2.) They provide a
self-stabilizing ““platform” by which self-
stabilization may be forced onto asyn-
chronous message-passing systems for
which a decidable predicate describing
the set of safe states has been provided.
The purpose of their “platform” is to re-
set the system upon the detection of an
illegitimate state. The “platform” only
writes to variables of the original pro-

ACM Computing Surveys, Vol. 25, No. 1, March 1993

58 . Marco Schneider

gram if an illegitimate state is detected.
Thus, during normal execution the
“platform” does not affect the original
program.

The work of Katz and Perry [1990]
suggests the next logical methodological
step for constructing self-stabilizing sys-
tems. The property of self-stabilization
can be separated from the algorithms
themselves. We now discuss the role of
compilation in the construction of self-
stabilizing systems.

5. THE ROLE OF COMPILERS WITH
RESPECT TO SELF-STABILIZATION

The purpose of a compiler is to take a
program written in one language and
produce an “equivalent” program in an-
other language. We typically think of a
compiler as taking a source program in a
high-level language and producing an ob-
ject program to be run on a particular
architecture. However, in either case the
architecture is represented by a lan-
guage, and thus a high-level language
may be thought of as an architecture in
its own right. Additionally, the source
and target may both be on the same
architecture, albeit abstract,

More formally, a compiler is a homo-
morphism f: A — B between classes
of architectures or systems, such that
for each system M € A, f(M) mimics
in some well-defined manner the compu-
tations of M.

An operational definition of “equiv-
alence” is that the object program pre-
serves those properties of the source
program that are important to the de-
signer. In a sequential paradigm under
termination we would expect that both
programs compute the same result. In
practice, the object program mimics the
source program in a well-defined man-
ner. For instance, in the case of impera-
tive languages, individual actions of the
source program map to one or more spe-
cific actions in the object program. In a
distributed or concurrent paradigm, we
would expect the preservation of qualita-
tive properties due to the need for coordi-
nation and control among the processes

ACM Computing Surveys, Vol. 25, No. 1, March 1993

of a system. This is true for nonterminat-
ing sequential systems, such as operat-
ing systems, as well.

When we design a program that
is self-stabilizing, we wish the compiler
to produce an object program that is
self-stabilizing on its target architec-
ture. Otherwise, it would be pointless
to go through the extra effort neces-
sary to make the original program self-
stabilizing. Given the importance of
self-stabilization as a program property,
it is prudent to ask whether it is pre-
served by the compilation process. Better
yet, should our program not be self-
stabilizing, we would like a compiler that
produces an object program that is self-
stabilizing on its target architecture. In
doing so we would be able to abstract the
difficulties of self-stabilization into the
compilation process and allow systems
designers to focus on other issues. Such
capabilities would be very desirable as
standard options on a compiler. If the
full benefits of self-stabilizing programs
are to be realized, they must be studied
in the context of compilers.

Let us review what has been accom-
plished with respect to self-stabilization
and compilers. Dijkstra’s [1973] seminal
work in self-stabilization may be inter-
preted as a demonstration of the limits of
the compilation process with respect to
self-stabilization, although he did not
present it in this fashion. In particular,
he showed that in general one cannot
construct a self-stabilizing ring of pro-
cesses consisting of identical (symmetric)
processes. We may interpret this result
as follows. There does not exist a com-
piler from asymmetric rings to symmet-
ric rings that forces or preserves
self-stabilization. However, if self-
stabilization is not required, we can com-
pile an asymmetric ring into a symmetric
ring. We combine the processes of the
asymmetric ring into one new process.
Each copy of this new process is started
in the component corresponding to the
appropriate original process. The “sym-
metric ring” will be asymmetric by state.
This observation is due to Gouda et al.
[1990].

In the work including and subsequent
to Dijkstra’s original presentation, up to
the past few years, self-stabilizing sys-
tems have been produced by “handcraft-
ing” them individually from scratch. The
one exception to this is Lamport’s [1986]
mutual exclusion algorithm wherein he
inserts additional statements into a non-
stabilizing program to yield a self-
stabilizing version. Only recently has the
subject of compilation been raised with
respect to self-stabilization. One of the
first papers in this area suggested that
the task of forcing self-stabilization is
often difficult to achieve, especially when
compiling from one abstract architecture
to another. Subsequent results would ap-
pear to contradict these conclusions. With
this in mind, we summarize the impor-
tant contributions of this early paper,
followed by detailed discussion of later
work in subsequent subsections.

Gouda et al. [1990] argue that self-
stabilization is in principle unstable
across architectures. In particular, they
demonstrate pathological cases for a va-
riety of abstract architectures under
which there cannot exist a compiler that
preserves or forces self-stabilization,
given a mostly liberal definition of pro-
gram equivalence. Their proofs rely on
exhibiting programs for which there does
not exist an equivalent self-stabilizing
version under the architecture in ques-
tion. The classes of concurrent systems
they consider include cellular arrays,
communicating finite-state machines,
CSP systems, systems of Boolean pro-
grams communicating via l-reader/1-
writer shared variables, and Petri Nets.

The research of Gouda et al. [1990] has
led to greater insight into the factors
that contribute to the instability of self-
stabilization. In addition to termination,
two new phenomena that prevent self-
stabilization, isolation, and look-alike
configurations, were characterized. These
factors are discussed in Section 6. Be-
yond characterizing some of the factors
that prevent self-stabilization within sys-
tems, the major contribution of this work
is the methodological issues it raised and
not the individual results. In particular,

Self-Stabdilization . 59

the results demonstrate that the ability
to force or preserve self-stabilization is
highly dependent on how we require
properties such as termination, concur-
rency, and fairness to be preserved when
compiling from one system to another.
For instance if we assume that termina-
tion must be preserved, then self-stabili-
zation cannot be forced for most of the
systems examined. We direct the reader
to the paper for further details.

In the remainder of this section
we discuss compilers that force self-
stabilization onto sequential programs,
message-passing systems, and shared-
memory systems.

5.1 Compilers for Sequential Programs

The primary focus of research on the
property of self-stabilization has been in
the context of concurrent and distributed
systems. Within such systems the goals
of algorithms are qualitative as well as
quantitative. In this section we discuss
the work that has been done with respect
to sequential programs with quantitative
goals (i.e., they compute a function or a
relation). The functional or relational
(under nondeterminism) specification of
a sequential program, as represented by
a mapping between initial and final
states, is trivial to preserve during nor-
mal compilation in contrast to other spec-
ifications. However, the requirement of
termination makes self-stabilization
more difficult to achieve. The work in
this area has focused on the tradeoffs
and relationships between compilers and
their object programs with respect to
their complexities. These relationships
have been examined with respect to
compilers that do and do not preserve
termination.

This area has been studied by Browne
et al. [1990] and Schneider [1992]. The
work of Browne et al. was done in the
context of reactive systems, more specifi-
cally real-time decision systems which
react to periodic sensor readings. We
briefly describe the rule-based program
model ag it appears in the two papers.

ACM Computing Surveys, Vol. 25, No. 1, March 1993

60 . Marco Schneider

Both models are similar to that of UNITY
[Chandy and Misra 1988]. For specific
details see the respective papers. A rule-
based program consists of an initializa-
tion section and a finite set of rules. A
rule is a multiple assignment statement
with a guard (enabling condition) which
is a predicate over the variables of the
program and thus over its state. In a
state for which the guard of a rule is
true, we say that the rule is enabled. A
computation is a sequence of rule firings
wherein at each step an enabled rule is
nondeterministically selected for execu-
tion. Because statements are nondeter-
ministically chosen to be executed, there
is not a program counter. This structure
provides a theoretically satisfying model
from which to study programs, as the
state space of a program is composed
entirely from its variables.

A program is considered to have termi-
nated when a fixed point is reached. A
fixed point is a state in which the values
of the variables (hence the state) cannot
change. This is the case if for every rule
its guard is false or the execution of its
assignment does not change the values of
its target variables. We define a partial
fixed point as a state from which a sub-
set of the program variables cannot
change.

The variables of a program consist of
its input and output variables respec-
tively. Self-stabilization would not be
possible were we to allow inputs to be
corrupted; thus input variables are con-
sidered incorruptible. This may be moti-
vated by the fact that in a reactive
system, the values of input variables are
determined by updates from an external
environment.

We consider two definitions of program
equivalence by which an object program
may be said to implement its source. In
each case we allow the object program to
use additional variables. An object imple-
ments its source with respect to fixed
points (partial fixed points) if on any in-
put, the object is guaranteed to reach a
fixed point (partial fixed point) corre-
sponding to a fixed point in the source.
Thus we consider compilers that do and
do not preserve termination. These defi-

ACM Computing Surveys, Vol. 25, No. 1, March 1993

nitions, though they allow the use of ad-
ditional variables, are not the same as
Katz and Perry’s [1990] extension (see
Section 5.2), since no requirement is
placed on how a computation proceeds in
the object program. We are now ready to
present the results in this area.

In order for a terminating program to
be self-stabilizing, the relation it com-
putes must be verifiable in one step;
otherwise it could terminate in an unsafe
state. This is not the case for most useful
programs. Consider, for example, sorting
a list of n elements. In order for a sort
program to terminate in a self-stabilizing
manner, it must verify in one step that
the output is indeed a sorted list and
that it is a permutation of the input.
Such a check requires Q(n) comparisons
in an array-based model and thus cannot
be achieved in one step. By virtue of this
fact, we can conclude that there does not
exist a compiler for arbitrary programs
that forces self-stabilization while pre-
serving termination. An example of a re-
lation that is verifiable under a standard
model is an algorithm that takes a com-
posite x as input and outputs a divisor d.
We need only verify that d divides x.

Browne et al. [1990] demonstrate a
class of programs for which there is a
compiler that forces self-stabilization,
while preserving termination. Their ob-
ject programs have a runtime and size
within a constant factor of their source.
They also assume that inputs are not
corruptible. These programs, which they
call “acyclic,” fit the following criteria:

(1) Their data dependency graphs are
acyclic.

(2) Each rule assigns only one variable.

(3) For any pair of enabled rules with
the same target variable, both rules
will assign the same value to that
variable.

Since general results are not possible
for infinite-state programs it is only nat-
ural to consider finite-state programs.
However, when we investigate the class
of programs restricted to boolean vari-
ables, we find that analogous results can-
not be obtained. The straightforward

solution to this problem is to create a
state graph from which one can construct
a lookup table. Using the table, under
any possible state the system will act
appropriately and in constant time. Since
the number of states is exponential in
the number of variables, the size of the
resulting program is exponential, and
thus its construction is not tractable.
Schneider [1992] shows that if there ex-
ists a polynomial-time compiler that
forces self-stabilization (while preserving
termination) onto boolean programs then
PSPACE = NP. These are two complex-
ity classes which are not thought to be
equivalent [Garey and Johnson 1979;
Johnson 1990]. Should we require that
source and object have the same set of
variables, then under such assumptions
PSPACE = P. This is even less likely.
Thus it appears that we cannot do better
than exponential runtime for such a com-
piler, if we wish to compile arbitrary
programs.

We define a family {P,n > 1} of
boolean programs as polynomial-time
uniform if given the input size n, P, can
be constructed in time polynomial in n.
Schneider [1992] shows that self-stabiliz-
ing polynomial-time uniform families
of boolean programs can be used to
compute exactly the relations in NP N
co-NP and provides polynomial-time
compilers to force self-stabilization onto
polynomial-time uniform families of
boolean programs in P as well as NP N
co-NP.

Since it is clear that for arbitrary pro-
grams, one cannot obtain the same re-
sults as for acyclic ones, it is prudent to
investigate the removal of the require-
ment that the object program reach a
fixed point (terminate). Schneider [1991]
shows that by weakening the definition
of equivalence to partial fixed points
(termination is not required), we can pro-
duce in quadratic time an equivalent
self-stabilizing program with a time com-
plexity that is the square of the original.
Schneider [1992] further improves this
result by reducing the time complexity of
the object to a constant factor of the
source. We describe informally how they
achieve their results.

Self-Stabilization . 61

It is assumed that the program com-
putes a function: otherwise it can be de-
terminized. Thus it always reaches a
unique fixed point with respect to any
input. The basic idea is to make an extra
copy of the state space (each of the vari-
ables) and use it to continuously regener-
ate the unique fixed point of the original
program. If the original variables are cor-
rupted, then eventually the new vari-
ables will generate a fixed point, and if
their values are different from the origi-
nal variables, the original variables are
reset.

Two auxiliary variables, step and ceil,
are introduced. They may be initialized
to 0 and 1 respectively, although this is
unnecessary. Every time one of the origi-
nal rules is executed, step is incre-
mented. When step > ceil, the original
variables are reset to their initial values;
step is set to zero; and ceil is incre-
mented by one. Thus the original pro-
gram is continuously reexecuted for one
more step each time. No matter how the
variables are altered, eventually step will
be greater than or equal to ceil, and the
original program will be rerun for ceil + 1
steps; and eventually a fixed point will
be generated.

The time complexity of the translation
is linear if the original source program
was functional and quadratic otherwise.
The time complexity of the object, in
terms of its source, for a computation of
length n, has an upper bound of O(n?).
This is reduced to O(n) in Schneider
[1992]. A further improvement is possi-
ble. If the source program has an execu-
tion time bounded by f(I), a function of
the input, then ceil may be replaced by
that function. The object will then have
the same time complexity as the source
and will stabilize within a constant fac-
tor of that time as well. This technique
may be applied to finite-state programs
since they will have bounded execution
time as well.

5.2 Compilers for Asynchronous
Message-Passing Systems

The work of Katz and Perry [1990] pro-
vides a general methodology, realizable

ACM Computing Surveys, Vol. 25, No. 1, March 1993

62 . Marco Schneider

by a compiler, to convert nonstabilizing
programs to self-stabilizing versions in
an asynchronous message-passing sys-
tem. This is accomplished through the
introduction of a self-stabilizing platform
which when superposed (interleaved)
with a nonstabilizing program yields a
self-stabilizing one. The resulting pro-
gram is called an extension of the origi-
nal program. Their methodology, as we
shall see, is restricted to programs for
which there exists a decidable predicate
for determining whether a global state is
legitimate or not.

There are three components to their
algorithm: a self-stabilizing version of
Chandy and Lamport’s [1985] global-
snapshot algorithm, a self-stabilizing re-
set algorithm which is superposed on it,
and a nonstabilizing program on which
they are superposed to yield a self-
stabilizing extension. A superposition in-
terleaves new code with original code,
without interfering with the original
codes normal execution.

Global snapshots are repeatedly acti-
vated from a distinguished initiator. It is
assumed that there exists a decidable
predicate that recognizes representations
of the illegitimate global states of the
source. Once the distinguished initiator
process has obtained a snapshot, it eval-
uates this predicate. Should the predi-
cate fail, indicating an illegitimate state,
execution of the reset algorithm is initi-
ated, setting the global state of the source
program to an initial state.

The snapshot and reset algorithms may
also be thought of as providing a self-
stabilizing “platform” that may be lay-
ered on programs in order to produce
gelf-stabilizing extensions. This method-
ology is suitable for a compilation process
requiring both program and predicate
(specifying the set of safe states) as input
and producing a self-stabilizing version
of the same program as output.

An extension may be defined in the
following way: Program Q is an extension
of program P if the projection onto all
variables and messages of P from the set
of legal execution sequences in Q is equal
to the set of legal execution sequences in
P, up to stuttering. The program coun-

ACM Computing Surveys, Vol. 25, No. 1, March 1993

ters need not be the same. Roughly
speaking this means that the subset of Q
corresponding to P acts exactly like P
except that the same state may repeat.
This last part is crucial because if P ter-
minates, its extension @ will need to re-
peat the final state of P forever, changing
only variables not present in P, in order
to be self-stabilizing. If Q terminates, it
cannot be a self-stabilizing extension of
P, because otherwise it could be put in a
final state with an illegal global state
relative to messages and variables.

The assumption that there exists a de-
cidable predicate to differentiate between
legitimate and illegitimate states is not
reasonable in all cases. Most programs
are not designed with a precise definition
of legitimate and illegitimate in mind,
and in fact Katz and Perry [1990] define
legitimate in terms of the reachable set.
The membership problem for the reach-
able set is generally undecidable and even
when it is not in a nondeterministic pro-
gram, the complexity of deciding mem-
bership may be greater than the com-
plexity of the program itself which need
only take one execution path. If we re-
strict ourselves to the domain of finite-
state programs then such problems be-
come decidable, but they are still poten-
tially intractable as we discussed in Sec-
tion 5.1.

Another point worth noting about their
methodology is that the global-snapshot
algorithm does not produce the current
state, but rather a possible successor to
the state from which it was initiated.
Thus it is possible to do a reset from a
legitimate state if the original algorithm
stabilizes of its own accord.

More recently, Awerbuch and
Varghese [1991] provide a compiler from
deterministic synchronous message-pass-
ing programs into self-stabilizing ver-
sions for asynchronous message-passing
systems. Their compiler is for noninter-
active protocols. A noninteractive proto-
col 1s a protocol specified by an
input /output relation. The protocols they
consider compute a relation over the cur-
rent enviroment. In particular, they take
as input the current network topology.
This allows the assumption that inputs

are not corruptible. Examples of the types
of algorithms considered are leader elec-
tion and spanning tree.

5.3 Compilers for Asynchronous
Shared-Memory Systems

We briefly touch upon some techniques
by which self-stabilization may be forced
onto shared-memory systems. In the
same way as was done for message-
passing systems, one can compose snap-
shot and reset algorithms. A snapshot
can be accomplished by a diffusing com-
putation. If an illegitimate state is de-
tected, a reset, such as appears in Arora
and Gouda [1990], is initiated.

A self-stabilizing synchronous shared-
memory system may be compiled into a
self-stabilizing asynchronous shared-
memory system as follows. We assume
that each process can read and write in
one atomic action and that each shared
variable is written to by only one process.
A self-stabilizing asynchronous unison
algorithm (as defined in Section 4) is
used to simulate the steps of the syn-
chronous system. Two copies of each
shared variable are maintained corre-
sponding to the current value and the
previous value. In this way, a process can
read the appropriate values of its neigh-
bors in order to compute its own next
value. When the local clock of a process
is incremented from i to ¢ + 1, it simul-
taneously executes one step of the syn-
chronous system, updating the current
and previous values for each of the shared
variables that it owns.

6. SOME FACTORS THAT PREVENT
SELF-STABILIZATION

In this section we discuss some of the
factors that prevent self-stabilization.
The first factor discovered to prevent
self-stabilization within a system, sym-
metry, was discussed in Section 3.3. The
next factor, termination, was touched
upon in our discussions on communica-
tion protocols (Section 3.6), as well as
compilers for sequential programs and
asynchronous message-passing programs
(Sections 5.1 and 5.2). The adverse af-

Self-Stabilization . 63

fects of termination are easily seen. If
any unsafe global state is a final state,
then a system will not be able to stabi-
lize. Self-stabilization is generally incom-
patible with termination. The one case
where self-stabilization can be achieved
in the presence of termination is for
finite-state sequential programs as we
discussed in Section 5.1. Since the num-
ber of states are finite, a compiler can
remove all of the unsafe states. While the
property of termination is very natural
when dealing with algorithms whose goal
is quantitative (i.e., compute a function),
it is unnatural in the domain of dis-
tributed systems, where computations
are nonterminating by design and have
qualitative goals such as coordination and
control. One form of termination that oc-
curs within distributed systems is dead-
lock wherein one or more processes wait
for an event that will not occur. We
now discuss how the use of synchroni-
zation primitives can lead to deadlock
states within a system and thus prevent
self-stabilization.

Within a distributed message-passing
system, there are certain points of syn-
chronization wherein one process must
wait for a message to come from another
process. Typically a process sends a mes-
sage and then waits for a response. By
way of a malicious adversary, control of a
local process could be placed at a point
just after a send instruction without a
message actually having been sent. Thus
at any local process state that follows the
sending of a message, given the existence
of a malicious adversary, it is impossible
for that process to know whether a mes-
sage has in fact been sent. This situation
can lead to deadlock wherein one or more
processes wait for messages that will
never come. This difficulty is addressed
by Katz and Perry [1990] through the
use of message prods wherein a message
is spontaneously re-sent from time to
time. Thus, even under the impression
that a message has been sent, it will
continue to be sent again, unless some
form of acknowledgment has been re-
ceived. In this way, deadlock is avoided.

In a shared-memory system, a process
can test the value of shared memory

ACM Computing Surveys, Vol. 25, No. 1, March 1993

64 . Marco Schneider

whenever it wants to. There is no need to
wait for a message, and thus such dead-
locks are not a problem. By contrast it is
generally impossible to avoid deadlock in
a CSP system as defined in Hoare [1978].
In CSP all communication is synchro-
nized such that both the receiver of a
message is blocked until it arrives and
the sender of a message is blocked until
it is received. By virtue of this property
we can show that there cannot exist a
compiler that forces self-stabilization
onto CSP systems, and in fact only a very
restricted set of CSP systems can be
self-stabilizing at all. Consider the undi-
rected graph formed from a CSP system
wherein a send and receive between any
two processes results in an edge between
them. Assume we have a system
for which the corresponding graph
forms a cycle. There does not exist a self-
stabilizing version of such a system
wherein the same communication pattern
exists. Consider that if the equivalent
self-stabilizing version has a cycle in its
graph then it contains a deadlock state
wherein each process in the cycle is
attempting to synchronize with its
neighbor.

We now elaborate upon the two new
factors that are discussed in Gouda et al.
[1990]. An isolation occurs within a sys-
tem when the local state and computa-
tion of each process is consistent with
some safe global state and computation,
but the resultant global state and compu-
tation is not safe. The system is unable
to stabilize due to inadequate communi-
cation or coordination between its pro-
cesses. For a precise formal definition,
we refer to the reader to Gouda et al.
[1990].

We give a simple example of isolation.
Consider an asynchronous message-pass-
ing system with three processes con-
nected as a tree consisting of a root pro-
cess and two child processes. There is a
communication channel from the root to
each child process. Let each process have
a counter. An action of the root consists
of incrementing its counter and sending
a message token to one of its children.
An action of a child consists of receiving

ACM Computing Surveys, Vol. 25, No. 1. March 1993

a message token and incrementing its
counter. We define a state as safe when
the sum of the children’s counters is equal
the sum of the root’s counter plus the
number of tokens in the channels. Since
the children have no way to communi-
cate and their actions are initiated by the
root, a malicious adversary could put the
system in an unsafe global state from
which it could not stabilize. For each
child the local computation and state are
consistent with all safe global computa-
tions, but the resultant global state and
computation are not. The preceding ex-
ample is degenerate in that any local
state will be consistent with a safe global
state.

Look-alike configurations result when
the same computation (sequence of ac-
tions) is enabled at two different states
with no way to differentiate between
them. Should one of the two states be
unsafe then the system cannot guarantee
convergence from the unsafe state. This
phenomenon is inherent to Petri nets.
For every infinite computation in a Petri
net, there are an infinite number of
look-alike configurations (states) from
which that computation may take place.

We give a simple example of look-alike
configurations. Consider an asyn-
chronous message-passing system con-
sisting of two processes, P and @, with
message channels between them in both
directions, and only one type of message
called “token.” Each process has one ac-
tion in which it receives a token and
forwards it to its neighbor (the other pro-
cess). All of the states in which there are
one or more tokens in the channel from
@ to P are look-alike configurations for
the above system. Consider that from any
such state, the computation (pg)* =
p,q,p,q, - is enabled, where p and ¢
denote the one action of P and) respec-
tively. Define a state as safe if there is
exactly one token in the system. Clearly,
the above system is not self-stabilizing.

7. SUMMARY

We have seen that it is indeed possible to
achieve the property of self-stabilization

within most systems. However, this con-
tinues to be a difficult task. Further de-
velopment of techniques and heuristics
for the design of self-stabilizing pro-
grams and their proofs will help in this
effort.

We have defined self-stabilization, sta-
bilization, probabilistic self-stabilization,
and pseudo-stabilization. Further inves-
tigation into the relationships between
these formalizations of the notion of self-
stabilization may prove fruitful. Other
useful definitions may exist as well. A
definition that incorporates the notion of
convergence span would be useful.

One weakness of our definition of self-
stabilization is that it is a global prop-
erty. No requirement is placed on how a
system converges to a safe state. Failure
in one component may lead to corrective
actions across an entire system. Local
detection and correction of failures is
more “natural” and desirable than tech-
niques such as global reset. Work in this
area has been initiated by Awerbuch et
al. [1991]. Further formalization of these
ideas would provide helpful guidelines
for the designer of self-stabilizing sys-
tems.

For finite-state machines, we have seen
that there are tradeoffs between the
number of states, the topology, and the
level of atomicity, as well as how we
define self-stabilization. The investiga-
tion into the exact relationships between
these properties continues.

With respect to compilers, we have seen
how the dimensions of program equiva-
lence, type of refinement, and class of
programs may influence our ability to
force or preserve self-stabilization. For
instance, self-stabilizing extensions may
be used to force self-stabilization onto
message-passing programs for which the
set of safe states can be described by a
decidable predicate, but they do not pre-
serve termination. These dimensions af-
fect complexity measures as well. In ad-
dition, there are tradeoffs between the
complexities of the source program, ob-
ject program, and compiler. Further re-
search is required to better understand
these relationships.

Self-Stabilization . 65

The investigation of the compilation
process benefits not only the compiler
writer, but also the systems designer who
seeks to “handcraft” self-stabilization.
Understanding the sensitivity or insta-
bility of self-stabilization and the factors
that contribute to it, is the first step in
constructing systems with this property,
whether we wish to handcraft or auto-
matically produce or preserve it. Along
these lines, a formal characterization of
the factors that prevent self-stabilization
would also be desirable.

ACKNOWLEDGMENTS

This survey is dedicated to the memory of Louis
Emerson Rosier (1951-1991), friend and advisor,
whose editorial feedback was very important in the
early stages of this manuscript.

It was at his suggestion that we examined self-
stabilization from the perspective of compilers. We
also acknowledge the assistance of Mohamed Gouda
as an invaluable source of information on self-sta-
bilization. We thank Anish Arora for his insightful
questions during discussions on the topic of self-
stabilization. We extend our gratitude to Jay Misra
and J. R. Rao for encouraging us to submit this
work for publication. We thank Edgar Knapp, J. R.
Rao, and Jacob Kornerup for providing comments
that led to greater clarity in our presentation at
various stages of its development. Finally, we ac-
knowledge the contribution of our editor Richard
Muntz and the anonymous referees. Their com-
ments and suggestions contributed significantly to
the overall clarity and structure of this work and
inspired a number of improvements.

This work was supported in part by a grant from
the Office of Naval Research, grant N00014-89-J-
1913.

REFERENCES

ABADIR, M. S., AND Goupa, M. G. 1992. The sta-
bilizing computer. In Proceedings of the 1992
International Conference on Parallel and Dis-
tributed Systems. (Dec.).

ArEK, Y., AND BrOWN, G. 1989. Self-stabilization
of the alternating-bit protocol. In Proceedings
of the 8th Symposium on Reliable Distributed
Systems, 80—83.

AFEE, Y., KUTTEN, S.. AND YUNG, M. 1990. Mem-
ory-efficient self-stabilization on general net-
works. In Proceedings of the 4th International
Workshop on Distributed Algorithms (Bari,
Italy, Sept.). In Lecture Notes in Computer
Science, vol. 486. Springer-Verlag, New York,
15-28.

ACM Computing Surveys, Vol. 25, No. 1, March 1993

66 . Marco Schneider

ARORA, A. 1992, A foundation for fault-tolerant
computing. Ph.D. dissertation, Dept of Com-
puter Sciences, Univ. of Texas at Austin.

ARORA, A., AND Goupa, M. G. 1992. Closure and
convergence: A foundation for fault-tolerant
computing. In Proceedings of the 22nd Interna-
tional Conference on Fault-Tolerant Computing
Systems.

ARORA, A., AND Goupa, M. G. 1990. Distributed
reset. In Proceedings of the 10th Conference on
Foundations of Software Technology and Theo-
retical Computer Science (Dec.). Also in Lecture
Notes on. Computer Science, vol. 472. Springer-
Verlag, New York.

ARORa, A, DorLev, S., anD Goupa, M. G. 1991.
Maintaining digital clocks in step In Proceed-
ings of the 5th International Workshop on Dis-
tributed Algorithms (Oct.). Also in Parall. Pro-
cess. Lett. 1, 1 (Sept.), 11-18.

AwgrBUcH, B., aND VarcHesg, G 1991 Dis-
tributed program checking: A paradigm for
building self-stabilizing distributed protocols.
In Proceedings of the 32nd IEEE Symposium
on Foundations of Computer Science (Oct.).
IEEE, New York

AwgrBuUcH, B., ParT, B. AND VARGHESE, G. 1991.
Self-stabilization by local checking and correc-
tion. In Proceedings of the 32nd IEEE Sympo-
stum on Foundations of Computer Science,
(Oct.). IEEE, New York.

Basting, F., YEN, 1., anp CHEN, 1. 1988. A class of
inherently fault tolerant distributed programs.
IEEE Trans. Softw. Eng. 14, 1432-1442.

BasTang, F., YEN, L., AND ZHAO, Y. 1989. On self-
stabilization, non-determinism, and inherent
fault tolerance. In Proceedings of the MCC
Workshop on Self-Stabilizing Systems. MCC
Tech. Rep. STP-379-89.

BrOWNE, J. C., EMERSON, A , GouDA, M., MIRANKER,
D., Mok, A., anDp Rosier, L. 1990 Bounded-
time fault-tolerant rule-based systems. Tele-
maties Informat. 7, 3 /4, 441-454.

BrownN, G. M., Goupa, M. G., anp Wu, C.-L. 1989.
Token systems that self-stabilize. IEEE Trans.
Comput. 38, 6 (June 1989), 845-852.

Burns, J. E. 1987, Self-stabilizing rings without
demons. Tech. Rep. GIT-ICS-87/36, Georgia
Inst of Technology.

BURNS, J. E., AND PACHL, J. 1989.
stabilizing rings. ACM Trans
Lang. Syst. 11, 330—344

Burns, J. E, Gouba, M. G., anp MiLLER, R. E
1990 Stabilization and pseudo-stabilization.
Tech. Rep. TR-90-13, Dept. of Computer Sci-
ences, Univ. of Texas at Austin

Burns, J. E, Goupa, M. G., aNnpD MILLER, R. E
1989. On relaxing interleaving assumptions.
In Proceedings of the MCC Workshop on Self-
Stabilizing Systems MCC Tech. Rep. STP-379-
89.

CHanDY, K. M., anp LamporT, L 1985. Dis-
tributed snapshots: Determining global states

Uniform self-
Programm

ACM Computing Surveys, Vol. 25, No 1, March 1993

of distributed systems. ACM Trans. Comput.
Syst. 3, 1, 63-75.

CuanDy, K. M., AND MISRa, J. 1988. Parallel Pro-
gram Design: A Foundation. Addison-Wesley,
New York.

Cuang, E. J. H, GonNeET, G. H. aND ROTEM, D.
1987. On the costs of self-stabilization. Inf
Process Lett. 24, (1987), 311-316.

CHeN, N. S, Yu, F. P, anp Huang, S. T. 1991, A
self-stabilizing algorithm for constructing
spanning trees. Inf. Process. Lett., 39, (1991),
147-151.

CHENG, A. M. K. 1990. Analysis and synthesis of
real-time rule-based decision systems. Ph.D.
dissertation, Dept of Computer Sciences, Univ.
of Texas at Austin.

CoOUVREUR, J.-M., FrancEz, N., aND Goubpa, M. G.
1992. Asynchronous unison. In Proceedings
of the 12th International Conference on Dis-
tributed Computing Systems (Yokohama,
Japan, June).

CrisTIAN, F. 1991. Understanding fault-tolerant
distributed systems. Commun. ACM 34, 2
(Feb.), 56-78.

CristiaN, F. 1985. A rigorous approach to fault-
tolerant programming. IEEE Trans. Softw.
Eng 11,1, (1985).

DIKSTRA, E. W. 1986. A belated proof of self-sta-
bilization. Distrib. Comput., 1, 5-6.

Dukstra, E. W. 1974, Self-stabilizing systems in
spite of distributed control. Commun. ACM 17,
643-644.

DuksTRA, E. W. 1973. Self-stabilization in spite
of distributed control. In Selected Writings on
Computing: A Personal Perspective. Springer-
Verlag, Berlin, 1982, 41-46. Originally pub-
hished in 1973.

Dorev, S., IsrarLi, A., aNnD Moran, S. 1990.
Self-stabilization of dynamic systems. In Pro-
ceedings of the 9th Annual ACM Symposium on
Principles of Distributed Computing (Quebec
City, Canada, Aug.). ACM, New York

EvANGELIST, M. 1989. Proceedings of the MCC
Workshop on Self-Stabilizing Systems. MCC
Tech. Rep. STP-379-89.

Frareso, M., anD Datra, A. 1992, Two-state
self-stabilizing algorithms. In Proceedings of
the 6th International Parallel Processing Sym-
posium (Beverly Hills. Calif. Mar.), 198-203.

FLATEBO, M., DATTA, A., AND GHOsH, S. 1991
Self-stabilization in distributed systems. IEEE
Comput.

Gargpy, M., anD JornsoN, D. Computers and In-
tractability: A Guide to the Theory of NP-Com-
pleteness. W. H. Freeman, New York.

GHOSH, S. 1990a. Self-stabilizing distributed
systems with binary machines. In Proceedings
of the 28th Annual Allerton Conference,
988-997.

GuosH, S. 1990b Understanding self-stabiliza-
tion in distributed systems. Tech. Rep. TR-90-
02. Dept. of Computer Science, Univ. of Jowa.

Goupa, M. G. 1989. The inevitable properties of
programs. Dept. of Computer Sciences, Univ. of
Texas at Austin.

Goupa, M. G. 1991. The stabilizing philosopher:
Asymmetry by memory and by action. Tech.
Rep. TR-87-12, Dept. of Computer Sciences,
Univ. of Texas at Austin.

Goupa, M. G., aND Evanceust, M. 1990. Con-
vergence /response tradeoffs in concurrent sys-
tems. In Proceedings of the 2nd IEEE Sympo-
stum on Parallel and Distributed Processing
(Dec.). IEEE, New York.

Goupa, M. G., AND HeErMAN, T. 1991. Adaptive
programming. IEEE Trans. Softw. Eng. 17,9
(Sept.).

Goupa, M. G., aND HERMAN, T. 1990. Stabilizing
unison. Inf. Process. Lett. 35 (1990), 171-175.

Goupa, M. G., anp Murrars, N. 1991, Stabilizing
communication protocols. IEEE Trans. Com-
put. 40, 4 (Apr.), 448-458.

Goupa, M. G., HoweLL, R. R., aND Rosigr, L. E.
The instability of self-stabilization. Acta Inf.
27, (1990), 697-724.

Happrx, F. F. 1991. Stabilization of bounded to-
ken rings. Tech. Rep. ARL-TR-91-31, Applied
Research Lab., Univ. of Texas at Austin.

HEerMAN, T. 1990. Probabilistic self-stabilization.
Inf. Process. Lett. 15, 63-67.

Hoarg, C. A. R. 1978. Communicating sequen-
tial processes. Commun. ACM 21, 666-677.
ISRAELI, A., AND JALFON, M. 1990. Token man-
agement schemes and random walks yield self
stabilizing mutual exclusion. In Proceedings of
the 9th Annual ACM Symposium on Principles
of Distributed Computing (Quebec City,

Canada, Aug.). ACM, New York.

ISRAELL, A., AND JALFON, M. 1989. Self-stabilizing
ring orientation. Tech. Rep., Dept. of Electrical
Engineering, Technion-Israel.

JounsoN, D. 1990. A catalog of complexity

classes. In Handbook of Theoretical Computer
Science. vol. A. North-Holland, Amsterdam.

Jonnson, B. 1988. The Design and Analysis of
Fault-Tolerant Digital Systems, Addison-Wes-
ley, New York.

Karz, S., aND PERRY, K. J. 1990. Self-stabilizing
extensions for message-passing systems. In

Self-Stabilization . 67
Proceedings of the 9th Annual ACM Sympo-

stum on Principles of Distributed Computing
(Quebec City, Canada, Aug.). ACM, New York.

KrUuER, H. S. M. 1979. Self-stabilization (in
spite of distributed control) in tree-structured
systems. Inf. Process. Lett., 8, 2, 2-79.

Lamport, L. 1986. The mutual exclusion prob-
lem: Part I[I—Statement and solutions. J.
ACM 33, 327-348.

LamporT, L. 1984. Solved problems, unsolved
problems and non-problems in concurrency. In
Proceedings of the 3rd ACM Symposium on
Principles of Distributed Computing. ACM,
New York, 1-11.

LapPriE, J.-C. 1985. Dependable computing and
fault tolerance: Concepts and terminology. In
Proceedings of FTCS-15, 2-11.

LEEMAN, D., AND RABIN, M. 1981. On the advan-
tages of free choice: A symmetric and fully
distributed solution of the dining philosophers
problem. In Proceedings of the 8th Annual ACM
Symposium on Principles of Programming Lan-
guages. ACM, New York, 133-138.

LN, X., anp GaosH, S. 1991. Self-stabilizing
maxima finding. In Proceedings of the 28th
Annual Allerton Conference.

MuLTARl, N. 1989. Towards a theory for self-
stabilizing protocols. Ph.D. dissertation, Dept.
of Computer Sciences, Univ. of Texas at Austin.

OzvEREN, C., WILLSKY, A., AND ANTSARLIS, P. 1989,
Stability and stabilizability of discrete event
dynamic systems. MIT LIDS Pub., LIDS-P-
1853, MIT, Cambridge, Mass.

SCHNEIDER, M. 1992. Compiling self-stabiliza-
tion into sequential programs. Dept. of Com-
puter Sciences, Univ. of Texas, Austin, Tex.

ScHNEIDER, M. 1991. Self-stabilization—A uni-
fied approach to fault tolerance in the face of
transient errors. In Tech. Rep. TR-91-18, Dept.
of Computer Sciences, Univ. of Texas at Austin.

TCHUENTE, M. 1981. Sur i auto-stabilisation dans
un feseau dordinateurs. RAIRO Inf. Theor. 15,
47-66. In French.

WHITBY-STREVENS, C. 1979. On the performance
of Dijkstra’s self-stabilising algorithms in spite
of distributed control. In Proceedings of the Ist
International Conference on Distributed Com-
puting Systems. IEEE, New York.

Recelved 1991, final revision March 1992, accepted January 1993

ACM Computing Surveys, Vol. 25, No. 1, March 1993

